Ecological Games For Smart Kids


Global Warming Educational Games

Global warming, also referred to as climate change, is the observed century-scale rise in the average temperature of the Earth's climate system, and its related effects. Multiple lines of scientific evidence show that the climate system is warming. Many of the observed changes since the 1950s are unprecedented in the instrumental temperature record, which extends back to the mid-19th century, and in paleoclimate proxy records covering thousands of years.

Public reactions to global warming and concern about its effects are also increasing. A global 2015 Pew Research Center report showed that a median of 54% of all respondents asked consider it "a very serious problem". Significant regional differences exist, with Americans and Chinese (whose economies are responsible for the greatest annual CO2 emissions) among the least concerned.

KoiKiwi has developed several games which point to educate about global warming, greenhouse gases, carbon impact and other related issues:




Eco Defender
Planet Earth is attacked by GHG molecules - Carbon and Fluor - shoot them, avoid the pollution clouds to save our planet! [play]

Ages: 6 to 16yrs     Level: Medium Teachers
Electric Vehicle Race
Race the petrol cars and trucks with your fast and clean electric vehicle - the best one to race with! [play]

Ages: 6 to 16yrs     Level: Medium Teachers
Shoot down greenhouse gases!
Protect Earth from greenhouse gases - shoot and destroy CO2, Ozone, Ammonia and other global warming gases [play]

Ages: 6 to 10yrs     Level: Medium Teachers



Environmental Memory Game
Try to find pairs of wind turbines, green house gas molecules and recycling icons in this cool game [play]

Ages: 6 to 99yrs     Level: Medium Teachers
Eco Tower
Collect plastic bottles as you avoid acid drops and CO2 molecules. Climb up the tower to clean the plastic bottles! [play]

Ages: 6 to 16yrs     Level: Medium Teachers

About Global Warming

Global warming, also referred to as climate change, is the observed century-scale rise in the average temperature of the Earth's climate system, and its related effects. Multiple lines of scientific evidence show that the climate system is warming. Many of the observed changes since the 1950s are unprecedented in the instrumental temperature record, which extends back to the mid-19th century, and in paleoclimate proxy records covering thousands of years. In 2013, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report concluded that "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century." The largest human influence has been the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide. Climate model projections summarized in the report indicated that during the 21st century, the global surface temperature is likely to rise a further 0.3 to 1.7 °C (0.5 to 3.1 °F) in the lowest emissions scenario, and 2.6 to 4.8 °C (4.7 to 8.6 °F) in the highest emissions scenario. These findings have been recognized by the national science academies of the major industrialized nations and are not disputed by any scientific body of national or international standing. Future climate change and associated impacts will differ from region to region. Anticipated effects include increasing global temperatures, rising sea levels, changing precipitation, and expansion of deserts in the subtropics. Warming is expected to be greater over land than over the oceans and greatest in the Arctic, with the continuing retreat of glaciers, permafrost and sea ice. Other likely changes include more frequent extreme weather events such as heat waves, droughts, heavy rainfall with floods and heavy snowfall; ocean acidification; and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the abandonment of populated areas due to rising sea levels. Because the climate system has a large "inertia" and greenhouse gases will remain in the atmosphere for a long time, many of these effects will persist for not only decades or centuries, but for tens of thousands of years to come. Possible societal responses to global warming include mitigation by emissions reduction, adaptation to its effects, building systems resilient to its effects, and possible future climate engineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC), whose ultimate objective is to prevent dangerous anthropogenic climate change. Parties to the UNFCCC have agreed that deep cuts in emissions are required and that global warming should be limited to well below 2.0 °C (3.6 °F) compared to pre-industrial levels, with efforts made to limit warming to 1.5 °C (2.7 °F). Public reactions to global warming and concern about its effects are also increasing. A global 2015 Pew Research Center report showed that a median of 54% of all respondents asked consider it "a very serious problem". Significant regional differences exist, with Americans and Chinese (whose economies are responsible for the greatest annual CO2 emissions) among the least concerned.

The greenhouse effect

The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in a planet's atmosphere warm its lower atmosphere and surface. It was proposed by Joseph Fourier in 1824, discovered in 1860 by John Tyndall, was first investigated quantitatively by Svante Arrhenius in 1896, and its scientific description was developed in the 1930s through 1960s by Guy Stewart Callendar. On Earth, an atmosphere containing naturally occurring amounts of greenhouse gases causes air temperature near the surface to be warmer by about 33 °C (59 °F) than it would be in their absence. Without the Earth's atmosphere, the Earth's average temperature would be well below the freezing temperature of water. The major greenhouse gases are water vapour, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases. Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. According to work published in 2007, the concentrations of CO2 and methane had increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores. Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago. Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. The rest of this increase is caused mostly by changes in land-use, particularly deforestation. Another significant non-fuel source of anthropogenic CO2 emissions is the calcination of limestone for clinker production, a chemical process which releases CO2. Estimates of global CO2 emissions in 2011 from fossil fuel combustion, including cement production and gas flaring, was 34.8 billion tonnes (9.5 ± 0.5 PgC), an increase of 54% above emissions in 1990. Coal burning was responsible for 43% of the total emissions, oil 34%, gas 18%, cement 4.9% and gas flaring 0.7%. In May 2013, it was reported that readings for CO2 taken at the world's primary benchmark site in Mauna Loa surpassed 400 ppm. According to professor Brian Hoskins, this is likely the first time CO2 levels have been this high for about 4.5 million years. Monthly global CO2 concentrations exceeded 400 ppm in March 2015, probably for the first time in several million years. On 12 November 2015, NASA scientists reported that human-made carbon dioxide continues to increase above levels not seen in hundreds of thousands of years; currently, about half of the carbon dioxide released from the burning of fossil fuels is not absorbed by vegetation and the oceans and remains in the atmosphere.

Global carbon dioxide emissions by country.

Over the last three decades of the twentieth century, gross domestic product per capita and population growth were the main drivers of increases in greenhouse gas emissions. CO2 emissions are continuing to rise due to the burning of fossil fuels and land-use change.:71 Emissions can be attributed to different regions. Attributions of emissions due to land-use change are subject to considerable uncertainty.:289 Emissions scenarios, estimates of changes in future emission levels of greenhouse gases, have been projected that depend upon uncertain economic, sociological, technological, and natural developments. In most scenarios, emissions continue to rise over the century, while in a few, emissions are reduced. Fossil fuel reserves are abundant, and will not limit carbon emissions in the 21st century. Emission scenarios, combined with modelling of the carbon cycle, have been used to produce estimates of how atmospheric concentrations of greenhouse gases might change in the future. Using the six IPCC SRES "marker" scenarios, models suggest that by the year 2100, the atmospheric concentration of CO2 could range between 541 and 970 ppm. This is 90–250% above the concentration in the year 1750. The popular media and the public often confuse global warming with ozone depletion, i.e., the destruction of stratospheric ozone (e.g., the ozone layer) by chlorofluorocarbons. Although there are a few areas of linkage, the relationship between the two is not strong. Reduced stratospheric ozone has had a slight cooling influence on surface temperatures, while increased tropospheric ozone has had a somewhat larger warming effect.

Observed and expected environmental effects

Anthropogenic forcing has likely contributed to some of the observed changes, including sea level rise, changes in climate extremes (such as the number of warm and cold days), declines in Arctic sea ice extent, glacier retreat, and greening of the Sahara. The average sea ice decline recorded from 1953 to 2006 is -7.8%±0.6%/decade, this is more than three times the size of the average forecast trend of -2.5%±0.2%/decade. Even the ‘worst case scenario’ models didn’t forecast the extent of the sea ice decline adequately. The quickest rate of sea ice decline from any of the models associated with the Intergovernmental Panel on Climate Change Fourth Assessment Report was -5.4%±0.4%/decade. Global warming has led to decades of shrinking and thinning in a warm climate that has put the Arctic sea ice in a precarious position, it is now vulnerable to atmospheric anomalies. Projections of declines in Arctic sea ice vary. Recent projections suggest that Arctic summers could be ice-free (defined as ice extent less than 1 million square km) as early as 2025–2030. "Detection" is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Detection does not imply attribution of the detected change to a particular cause. "Attribution" of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence. Detection and attribution may also be applied to observed changes in physical, ecological and social systems.

Ecological systems

As the climate change melts sea ice, the U.S. Geological Survey projects that two-thirds of polar bears will disappear by 2050. In terrestrial ecosystems, the earlier timing of spring events, as well as poleward and upward shifts in plant and animal ranges, have been linked with high confidence to recent warming. Future climate change is expected to affect particular ecosystems, including tundra, mangroves, coral reefs, and caves. It is expected that most ecosystems will be affected by higher atmospheric CO2 levels, combined with higher global temperatures. Overall, it is expected that climate change will result in the extinction of many species and reduced diversity of ecosystems. Increases in atmospheric CO2 concentrations have led to an increase in ocean acidity. Dissolved CO2 increases ocean acidity, measured by lower pH values. Between 1750 and 2000, surface-ocean pH has decreased by ≈0.1, from ≈8.2 to ≈8.1. Surface-ocean pH has probably not been below ≈8.1 during the past 2 million years. Projections suggest that surface-ocean pH could decrease by an additional 0.3–0.4 units by 2100. Future ocean acidification could threaten coral reefs, fisheries, protected species, and other natural resources of value to society. Ocean deoxygenation is projected to increase hypoxia by 10%, and triple suboxic waters (oxygen concentrations 98% less than the mean surface concentrations), for each 1 °C of upper ocean warming.

Long-term effects

Main article: Long-term effects of global warming On the timescale of centuries to millennia, the magnitude of global warming will be determined primarily by anthropogenic CO2 emissions. This is due to carbon dioxide's very long lifetime in the atmosphere. Stabilizing the global average temperature would require large reductions in CO2 emissions, as well as reductions in emissions of other greenhouse gases such as methane and nitrous oxide. Emissions of CO2 would need to be reduced by more than 80% relative to their peak level. Even if this were achieved, global average temperatures would remain close to their highest level for many centuries. As of 2016, emissions of CO2 from burning fossil fuels had stopped increasing, but The Guardian reports they need to be "reduced to have a real impact on climate change". Meanwhile, this greenhouse gas continues to accumulate in the atmosphere. In that context, the New York Times reported that scientific installations analyzing oceanic air detected the excess carbon dioxide in the atmosphere "rose at the highest rate on record in 2015 and 2016." It hs been suggested that this rise in CO2 levels is the result of changing absorption patterns of the ocean and land surface in that they may have reached the limit of their ability to absorb carbon dioxide. Also, CO2 is not the only factor driving climate change. Concentrations of atmospheric methane, another greenhouse gas, rose dramatically between 2006–2016 for unknown reasons. This undermines efforts to combat global warming and there is a risk of an uncontrollable runaway greenhouse effect. Long-term effects also include a response from the Earth's crust, due to ice melting and deglaciation, in a process called post-glacial rebound, when land masses are no longer depressed by the weight of ice. This could lead to landslides and increased seismic and volcanic activities. Tsunamis could be generated by submarine landslides caused by warmer ocean water thawing ocean-floor permafrost or releasing gas hydrates. Some world regions, such as the French Alps, already show signs of an increase in landslide frequency.

Impacts

For the IPCC Fourth Assessment Report, experts assessed the literature on the impacts of climate change on ecosystems. Rosenzweig et al. (2007) concluded that over the last three decades, human-induced warming had likely had a discernible influence on many physical and biological systems (p. 81). Schneider et al. (2007) concluded, with very high confidence, that regional temperature trends had already affected species and ecosystems around the world (p. 792). With high confidence, they concluded that climate change would result in the extinction of many species and a reduction in the diversity of ecosystems (p. 792). Terrestrial ecosystems and biodiversity: With a warming of 3 °C, relative to 1990 levels, it is likely that global terrestrial vegetation would become a net source of carbon (Schneider et al., 2007:792). With high confidence, Schneider et al. (2007:788) concluded that a global mean temperature increase of around 4 °C (above the 1990-2000 level) by 2100 would lead to major extinctions around the globe. Marine ecosystems and biodiversity: With very high confidence, Schneider et al. (2007:792) concluded that a warming of 2 °C above 1990 levels would result in mass mortality of coral reefs globally. In addition, several studies dealing with planktonic organisms and modelling have shown that temperature plays a transcendental role in marine microbial food webs, which may have a deep influence on the biological carbon pump of marine planktonic pelagic and mesopelagic ecosystems. Freshwater ecosystems: Above about a 4 °C increase in global mean temperature by 2100 (relative to 1990-2000), Schneider et al. (2007:789) concluded, with high confidence, that many freshwater species would become extinct. Studying the association between Earth climate and extinctions over the past 520 million years, scientists from the University of York write, "The global temperatures predicted for the coming centuries may trigger a new ‘mass extinction event’, where over 50 per cent of animal and plant species would be wiped out." Many of the species at risk are Arctic and Antarctic fauna such as polar bears and emperor penguins. In the Arctic, the waters of Hudson Bay are ice-free for three weeks longer than they were thirty years ago, affecting polar bears, which prefer to hunt on sea ice. Species that rely on cold weather conditions such as gyrfalcons, and snowy owls that prey on lemmings that use the cold winter to their advantage may be hit hard. Marine invertebrates enjoy peak growth at the temperatures they have adapted to, regardless of how cold these may be, and cold-blooded animals found at greater latitudes and altitudes generally grow faster to compensate for the short growing season. Warmer-than-ideal conditions result in higher metabolism and consequent reductions in body size despite increased foraging, which in turn elevates the risk of predation. Indeed, even a slight increase in temperature during development impairs growth efficiency and survival rate in rainbow trout. Rising temperatures are beginning to have a noticeable impact on birds, and butterflies have shifted their ranges northward by 200 km in Europe and North America. Plants lag behind, and larger animals' migration is slowed down by cities and roads. In Britain, spring butterflies are appearing an average of 6 days earlier than two decades ago. A 2002 article in Nature surveyed the scientific literature to find recent changes in range or seasonal behaviour by plant and animal species. Of species showing recent change, 4 out of 5 shifted their ranges towards the poles or higher altitudes, creating "refugee species". Frogs were breeding, flowers blossoming and birds migrating an average 2.3 days earlier each decade; butterflies, birds and plants moving towards the poles by 6.1 km per decade. A 2005 study concludes human activity is the cause of the temperature rise and resultant changing species behaviour, and links these effects with the predictions of climate models to provide validation for them. Scientists have observed that Antarctic hair grass is colonizing areas of Antarctica where previously their survival range was limited. Mechanistic studies have documented extinctions due to recent climate change: McLaughlin et al. documented two populations of Bay checkerspot butterfly being threatened by precipitation change. Parmesan states, "Few studies have been conducted at a scale that encompasses an entire species" and McLaughlin et al. agreed "few mechanistic studies have linked extinctions to recent climate change." Daniel Botkin and other authors in one study believe that projected rates of extinction are overestimated. For "recent" extinctions, see Holocene extinction. Many species of freshwater and saltwater plants and animals are dependent on glacier-fed waters to ensure a cold water habitat that they have adapted to. Some species of freshwater fish need cold water to survive and to reproduce, and this is especially true with salmon and cutthroat trout. Reduced glacier runoff can lead to insufficient stream flow to allow these species to thrive. Ocean krill, a cornerstone species, prefer cold water and are the primary food source for aquatic mammals such as the blue whale. Alterations to the ocean currents, due to increased freshwater inputs from glacier melt, and the potential alterations to thermohaline circulation of the worlds oceans, may affect existing fisheries upon which humans depend as well. The white lemuroid possum, only found in the Daintree mountain forests of northern Queensland, may be the first mammal species to be driven extinct by global warming in Australia. In 2008, the white possum has not been seen in over three years. The possums cannot survive extended temperatures over 30 °C (86 °F), which occurred in 2005. A 27-year study of the largest colony of Magellanic penguins in the world, published in 2014, found that extreme weather caused by climate change is responsible for killing 7% of penguin chicks per year on average, and in some years studied climate change accounted for up to 50% of all chick deaths. Since 1987, the number of breeding pairs in the colony has reduced by 24%. Climate change is leading to a mismatch between the snow camouflage of arctic animals such as snowshoe hares with the increasingly snow-free landscape.









    To get updates:
   Join the KoiKiwi club